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Abstract

ARTSS is a CFD code written in C++ that simulates buoyancy-driven turbu-

lent smoke propagation based on finite differences and a large-eddy simulation

turbulence model, using a GPU for accelerated computation. In the context of

this work, the Message Passing Interface is implemented in ARTSS . This allows

ARTSS to use multiple GPUs simultaneously. In addition to faster computa-

tion, this also permits more grid cells to be used in a simulation, since there are

theoretically no longer any memory constraints. In order to avoid changing the

structure of the existing code, a separate class MPIHandler is implemented. A

decentralized approach is chosen as the parallelization strategy. This means that

each process reads the configuration file and performs a domain decomposition

for itself. Communication is non-blocking to avoid deadlocks.

For the analysis of the MPI implementation a simple tunnel setup is used which

has a constant velocity profile in positive x-direction. A maximum of 16 GPUs or

CPUs are used for the runtime analysis. The evaluation of these measurements

shows that the MPI implementation provides the desired speedup.
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Chapter 1

Introduction

Science is based on observation, theory and physical experimentation. An obser-

vation leads to a hypothesis, which in turn leads to a theory, which is proven or

disproved by an experiment. Depending on the theory, those experiments may

be too expensive, time-consuming or impossible to perform. In modern science,

therefore, numerical simulations that embody the proposed theory are carried

out and then compared with the observation of the real world. If observation

and simulation are in agreement, the theory is considered proven.

Some numerical simulations are so complex that they are listed in the so-called

Grand Challenges, a set of complex scientific problems that require extremely

powerful computers to approximate the solution [Levin, 1989]. To utilize the

computing resources of the so-called supercomputers, special application pro-

gramming interfaces must be implemented in simulation software. This thesis

focuses on the implementation and analysis of the Message Passing Interface

in an existing numerical solver for smoke spread simulations. In principle, the

more computing resources can be used and the higher the performance of a

single computing resource, the faster a simulation can be calculated.

A way to quantify the performance capability of a computer is to measure the

number of floating-point arithmetic calculations a systems can perform on a

per-second basis. The measurement, floating-point operations per second, is

abbreviated as FLOPS. The FLOPS performance is determined by two factors.

On the one hand by increasing the clock frequency of a single processing unit

and on the other hand by the parallel execution of tasks on different processing

units. The increase in clock frequency is mainly achieved by reducing the size of

the components of the processing units (i.e. the size of a transistor), thus reduc-

ing the capacitance and natural time constants [Sterling et al., 2018]. For the

execution of parallel tasks, a distinction must be made between the microscopic

and macroscopic view.
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Chapter 1. Introduction

The microscopic view is limited to the parallelization within a processor with

several processing units sharing the same memory. Within this view two ap-

proaches are pursued [Hwu et al., 2008]. One is the multicore approach, which

minimize the execution latency of a single thread. This is done by using large

cache memory, low-latency arithmetic units, and sophisticated operand deliv-

ery logic. However, this low-latency deign consumes chip area and power that

could be otherwise used to provide more arithmetic execution units [Kirk and

Hwu, 2016]. A current example is the AMD Ryzen 3900x CPU with 12 cores,

which delivers 132.54 gigaFLOPS in double precision [University of Washington,

2020]. The second approach is the many-thread strategy, which optimize for the

execution throughput of massive numbers of threads while allowing individual

threads to have a potentially much longer execution latency. This throughput-

oriented design saves chip area and power which also allows an increased number

of arithmetic units [Kirk and Hwu, 2016]. A current example for throughput-

oriented design is the NVIDIA Tesla P100 graphics processing unit (GPU) with

3584 cores, which delivers 4700 gigaFLOPS in double precision [Nvidia, 2020a].

Besides the microscopic view, the macroscopic view looks at many independent

processors, each of which uses its own memory. This distributed memory ap-

proach is used especially for supercomputers and allows the use of any number

of processors. The de facto standard for communication between processors is

the so called Message Passing Interface. The combination of macroscopic and

microscopic view, also called hybrid parallelization, allows supercomputers to

achieve computational performance in the petaFLOPS range. In the context

of this work, the JURECA system of the Forschungszentrum Jülich is used,

which delivers 3.54 (CPU) + 14.98 (GPU) petaFLOPS in peak performance

[Forschungszentrum Jülich GmbH, 2020].
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Chapter 1. Introduction

1.1 ARTSS

The implementation of the Message Passing Interface is done in ARTSS , which

is short for Accelerator-based Real Time Smoke Simulator. It is a CFD code

base, written in C++, simulating buoyancy-driven turbulent smoke spread based

on finite differences and a large eddy simulation turbulence model [Küsters,

2018]. It is based on JuROr, which was originally developed within the OR-

PHEUS project by Dr. Anne Küsters. In addition, ARTSS has the option of

Dynamic Domain Adaptation, which allows the calculation of a partial section

of the entire geometry. If the remaining geometry sections are required later in

the simulation process, they are automatically loaded [Würzburger, 2019].

Unlike other CFD solvers that specialize in smoke propagation, such as the Fire

Dynamics Simulator (FDS ) or fireFoam, ARTSS has the ability to calculate

simulation results in real time, while maintaining high accuracy of simulation

results. Figure 1 shows the comparison between the calculation time for a

simulation with FDS, using a Intel Xeon Haswell E5-2680 v3 @ 2.2 GHz CPU and

ARTSS , using a NVIDIA Pascal P100 (PCIe, 12 GB) GPU. A simple simulation

setup with three different grid resolutions is investigated [Küsters, 2018]. A real-

time simulation is achieved as soon as the solution is calculated faster than the

simulation time, here 500 seconds.
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Figure 1: Comparison between Fire Dynamics Simulator and ARTSS (GPU Version)
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Chapter 1. Introduction

It can be seen that ARTSS as well as FDS can calculate the simulation results

in real time for small problem sizes (coarse). In order to calculate the simulation

results with a higher accuracy, the grid resolution must be refined (medium and

fine). In doing so, it can be seen that unlike ARTSS , FDS is no longer able

to calculate the results in real time. To achieve this, ARTSS uses a GPU in

addition to the CPU, which is significantly more performant in parallel tasks

due to the throughput-oriented design. In the area of the smallest problem

size, it can clearly be seen that FDS computes the simulation results faster

than ARTSS . This is due to the fact that the data exchange between CPU

and GPU in ARTSS , which does not occur in FDS, has a significant influence

on the calculation time. However, this effect is relativized as the problem size

increases, since the computation time on the GPU clearly exceeds the time for

data exchange.

The GPU usage in ARTSS is implemented by the OpenACC Application Pro-

gramming Interface. OpenACC is a collection of compiler directives and runtime

routines that allows to specify loops and code areas in standard C, C++ and

Fortran [Nvidia, 2020b].

1.2 Motivation

At the time before this work, ARTSS is limited to the locally available hard-

ware. That is, ARTSS can either use a CPU core and a GPU simultaneously or

multiple CPU cores sharing the same memory. This leads to two fundamental

problems. First, only the computing power of one GPU can be accessed, and

second, only the memory of one GPU can be used. In particular, the last prob-

lem leads to serious limitation, since the size of the simulation is restricted to the

size of a GPU memory unit. The goal of this work is therefore the implementa-

tion of the Message Passing Interface within ARTSS to be able to use multiple

GPUs and CPUs simultaneously. This leads to a reduction of the computation

time as well as to the removal of the memory limitation and thus the possibility

of the computation of an arbitrary problem size.
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Chapter 2

Implementation

The implementation of the Message Passing Interface in ARTSS is done under

consideration of two goals. On the one hand, the code base must not be changed

in its structure and, on the other hand, it must be ensured that ARTSS also

functions without MPI, thus serially. The latter is realized by the use of condi-

tional inclusion statements, which are activated or deactivated when compiling

the code.

The structure of ARTSS can be divided into four segments [Küsters, 2018].

Figure 2 shows the relationship between these segments in the form of a

schematic class diagram. The first segment (1. Time Integration) serves as

an introduction to the simulation process. Here, among other things, the solver

and the required fields, e.g. temperature, pressure and speed are initialized.

The second segment (2. Problem and solution method definition) is dedicated

to the exact definition of the solver. Here, the module-based approach of

ARTSS is elucidated. The pure virtual class ISolver is realised by a descriptive

class. Depending on the problem at hand, an existing combined problem solver

can be used here. These combined problem solvers consist of individual solvers

which are described in the third segment (3. Numerical Methods). Each of

these individual solvers is again represented by a virtual class. This allows the

use of different numerical methods for one individual problem. For example, for

the calculation of diffusion, three different numerical methods (Jacobi, Explicit,

colored Gauss-Seidel) are available, which can be freely selected by the user at

the beginning of a simulation. The fourth segment (4. Auxiliaries) contains

all the elements of ARTSS that are needed to complement the other three seg-

ments. This includes, among other things, the visualization, the description of

the domain and the boundary conditions. The utility group contains functions

for reading in XML configuration files and other auxiliary functions.
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Chapter 2. Implementation

TimeIntegration

- SolverController m_solver_controller

...

+ void             run()

BoundaryController

- BoundaryDataController*   m_bdc_boundary

- Multigrid*                m_multigrid

- Surface**                 m_surfaceList

- Obstacle**                m_obstacleList

...

+ void                      applyBoundary(...)

...

BoundaryData

- BoundaryCondition*  m_boundaryConditions

...

...

Boundary

- size_t*  m_boundaryList

- size_t   m_size_boundaryList

...

- void     innerCells()

- void     boundaryCells()

...

BoundaryDataController

...

- void  addBoundaryCondition(...)

- void  getBoundaryCondition(...)

...

DomainBoundary

Boundary handling

SolverController

- ISolver*         m_solver

- ISource*         m_soruce_temperature

...

+ void             solver_do_step(...)

+ void             update_sources(...)

...

ISolver

+ void do_step()

Solver handling

NSTurbSolver

- IAdvection*  adv_vel

- IDiffusion*  dif_vel

- IPressure*   pres

- ISource*     sou_vel

- ITurbulence* mu_tub

...

+ void         do_step()

...

AdvectionSolver

- IAdvection*  adv

...

+ void         do_step()

...

.
.
.

Combined problem solver

Domain

- real  m_x1, m_x2, m_y1, m_y2, m_z1, m_z2

- real  m_X1, m_X2, m_Y1, m_Y2, m_Z1, m_Z2

...

+ real  get_x1()

- real  get_x2()

...

Field

Analysis

Utility

Support classes

Visualisation

Legend

Use

Realize

<name>

<name>

Domain

...

...

Single Class or

Namespace

Class with

attributes

Single problem solver

IPressure

+ void pressure(...)

+ void projection(...)

+ void divergence(...)

IDiffusion

+ void diffuse(...)

.
.
.

<Pressure>

...

<Diffusion>

...

.
.
.

1 Time Integration

2 Problem and solution method
definition

3 Numerical Methods

4 Auxiliaries

group of classes
without attributes

Figure 2: Class diagram of ARTSS
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2.1 Message Passing Interface

The Message Passing Interface is a message-passing library interface specifica-

tion which is developed and maintained by the MPI Forum, a public body with

representatives from various organisations. The first version was released in

1994, while the most recent version 3.1, at the time of this work, was released

in 2015. Since MPI is a library interface specification, the implementation is

realized by other organizations, such as Open MPI or MPICH. [MPI Forum,

2015]

MPI primarily targets the message-passing parallel programming model, where

data is moved from the address space of one process to that of another process.

It was originally developed for distributed storage architectures where data was

sent over a dedicated network. In the current version, however, shared memory

systems can also be used efficiently [Gropp et al., 2014]. Figure 3 illustrates the

use of MPI within ARTSS .

Network

Figure 3: MPI usage within ARTSS

Each node consists of a CPU, a Random-Access-Memory unit (RAM) and a

GPU. The communication between the CPU and the GPU is done using the

OpenACC standard within a node. The communication between the nodes

takes place via the point-to-point communication of MPI. A distinction is made

between two types of point-to-point communication.
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A blocking send call blocks until the send memory can be safely reused. Simi-

larly, a blocking receive call blocks until the receive memory actually contains

the intended message. Under certain circumstances, this can lead to the soft-

ware experiencing a deadlock. To prevent this, the MPI standard also defines

so-called non-blocking communication. This has the advantage that a send or

receive function does not have to wait for the response of the respective partner

function and therefore no deadlock can occur. If this strategy is used, it must be

ensured that the data in the send memory is not changed before the process is

completed. MPI provides special functions to check the status of a non-blocking

communication. For point-to-point communication in ARTSS , the non-blocking

variant is used.

Within MPI, the communication pattern of a set of processes can be represented

by a topological pattern or more generally by a graph. This arrangement is

called virtual topology. The structure of the virtual topology is defined with

MPI. However, the mapping between the virtual topology and the underlying

hardware is outside the capabilities of MPI and is done by the accompanying

operating system. The virtual topology for the MPI implementation in ARTSS

uses a 3-dimensional hypercube, which is shown in Figure 4. [MPI Forum, 2015]

Figure 4: Virtual Topology of MPI implementation in ARTSS. Red arrows indicate the com-

munication links (non-periodic)

A MPI program is compiled with a compiler wrapper. They do not actually

perform the compilation and linking steps themselves, but add the appropriate

compiler and linker flags and call the underlying compiler and linker.
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Chapter 2. Implementation

In order to run an MPI program, a special MPI command must be called and

the number of processes to be used must be set.

mpiexec -n <number of processes> ...

2.2 MPIHandler class

To keep the code structure as independent as possible from the MPI implemen-

tation, the separate class MPIHandler is introduced within the utility group.

This class serves as an intermediary between ARTSS and the MPI standard.

Figure 5 shows the corresponding UML class diagram.

MPIHandler

- single:                                          MPIHandler*

- m_MPICART:                                       MPI_COMM

- m_XCOM:                                          MPI_COMM

- m_YCOM:                                          MPI_COMM

- m_ZCOM:                                          MPI_COMM

- m_XDIM, m_YDIM, m_ZDIM:                          int

- m_XRANK, m_YRANK, m_ZRANK:                       int

- m_inner_left:                                    vector<vector<size_t>>

- m_inner_right:                                   vector<vector<size_t>>

- m_inner_bottom:                                  vector<vector<size_t>>

- m_inner_top:                                     vector<vector<size_t>>

- m_inner_front:                                   vector<vector<size_t>>

- m_inner_back:                                    vector<vector<size_t>>

- m_mpi_neighbour:                                 vector<int>

- m_mpi_neighbour_periodic:                        vector<int>

- m_dimensions:                                    vector<int>

- MPIHandler(MPICART: MPI_Comm, dimensions: int*)

- check_mpi_neighbour():                           void

+ get_instance():                                  MPIHandler*

+ get_rank():                                      int

+ get_cords():                                     vector<int>

+ get_mpi_neighbour():                             vector<int>

+ get_max_val(val: double):                        double

+ calc_inner_index():                              void

+ set_barrier():                                   int

+ convert_domain(x1,x2: real&, direction: int):    void

+ convert_obstacle(x1,x2: real&, direction:        bool

+ convert_grid(n: size_t&, direction: int):        void

+ has_obstacle(ox1,ox2,oy1,oy2,oz1,oz2: real&):    void

+ exchange_data(data_field: real*, index_field: size_t**, patch_starts: size_t*, level: size_t):    void

Figure 5: UML class diagram of MPIHandler - implementation level details
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In order for the Message Passing Interface to be used within ARTSS , the flag

-DUSEMPI must first be set at the time of compilation.

Subsequently, the number of processes for a simulation can be configured within

the XML file or via the command line. If the configuration is done using an

XML file, the following parameters must be set within the domain parameters

tag.

...

<domain_parameters>

...

<MESHX> ... </MESHX>

<MESHY> ... </MESHY>

<MESHZ> ... </MESHZ>

...

</domain_parameters>

...

In certain cases, it is useful to carry out the configuration via the command line.

For this purpose, the flags -x, -y and -z are appended to the end of the running

command.

mpiexec -n 8 artss ./simulation.xml -x 2 -y 2 -z 2

If the configuration is done via the command line, undefined flags automatically

obtain the value 1. If the configuration is carried out through an XML file, all

three parameters must be defined. As soon as the configuration is done from

the command line, the values within the XML file are ignored.

10
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2.3 Domain decomposition

Domain decomposition refers to the splitting of computational work among mul-

tiple processors by dividing the computational domain of a problem into smaller

subdomains. This is referred to as a graph partitioning problem. The aim of

solving this problem is to perform the decomposition in such a way that each

subdomain has the same computational effort, therefore a balanced load, and

that the communication for data exchange is minimized. To achieve this, several

options are available. [George and Sarin, 2011]

� Geometric Approaches

These approaches rely mainly on the physical mesh coordinates to par-

tition the problem domain into subdomains corresponding to regions of

space.

� Coordinate-Free Approaches

These approaches are used in particular when the focus is on minimizing

the communication between subdomains and the problem is not embedded

in a geometric space.

� Dynamic Approaches

These techniques are used when the structure of the problem changes dy-

namically. They focus on dynamically repartitioning the problem domain

to ensure load balancing.

A key aspect of domain decomposition is the mapping of subdomains to the

underlying hardware. The most efficient way is to assign a separate process

to each subdomain. To keep communication times as short as possible, virtual

topology and physical hardware should be similar.

A decentralized geometric approach is chosen as the method for domain decom-

position in ARTSS . In this context, decentralized refers to the fact that each

process reads in the configuration and initializes the corresponding data. This

decentralized approach has the advantage that initial parameters do not have to

11
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be distributed across all processes. At the same time all subdomains in ARTSS

have the same size. This makes configuration especially easy for the end user,

since load balancing is automatically given by constant problem size and only

three parameters have to be defined inside the simulation configuration.

Figure 6: Left: One physical domain with no subdomains; Right: One physical domain with

64 subdomains

Figure 6 shows an example of a domain decomposition in ARTSS . The left side

shows a physical domain with the dimensions 3.2 m × 3.2 m × 2.0 m and no

subdomain. Therefore one single process computes the entire domain. The right

side, on the other hand, shows the same domain with 64 subdomains. This is

represented by the following configuration.

...

<domain_parameters>

...

<MESHX> 4 </MESHX>

<MESHY> 4 </MESHY>

<MESHZ> 4 </MESHZ>

...

</domain_parameters>

...

By dividing the number of subdomains in each direction by the total

length of the respective direction, you get for each domain a dimension of

0.8 m × 0.8 m × 0.5 m.

12
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Due to the decentralized nature of domain decomposition in ARTSS, it is nec-

essary that each subdomain computes its own physical dimensions, i.e. X1, X2,

Y1, Y2, Z1 and Z2. The MPIHandler class implements this behavior with the

convert domain function.

void MPIHandler::convert_domain(real& p1, real& p2, int direction)

This function receives three parameters. p1 and p2 are the respective start and

end points of the entire physical domain. The integer value direction indicates

one of the three spatial directions (0 = x, 1 = y, 2 = z). In the example above,

there are a total of four subdomains in x-direction. Thus, the local number of

the current subdomain is a value between zero and three. Defining the number

of subdomains in the respective spatial direction as total domains, the number

of the current subdomain with local domain and the physical local length with

local length =
(p1− p2)

total domains
, (2.1)

one gets with

local p1 = p1 + local domain · local length (2.2)

and

local p2 = p2 + (local domain+ 1) · local length (2.3)

the new start and end points of the respective subdomain.

The convert grid function is used to calculate the grid resolution in the cor-

responding subdomain.

void MPIHandler::convert_grid(size_t& n, int direction)

The parameter n is the number of grid points for the whole domain in the

given direction. Defining the number of subdomains in the respective spatial

direction as total domains one gets with

local n =
n− 2

total domains
+ 2 (2.4)

the grid solution of the respective subdomain.

13
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ARTSS uses ghost cells for the implementation of the boundary condition.

Equation 2.4 ensures that each subdomain still has these ghost cells. If a sub-

domain has an adjacent subdomain, the data exchange between them is done

through the ghost cells. If a subdomain does not have a neighbor, i.e., it is an

outermost subdomain, then the ghost cells are still used for the implementation

of the boundary conditions. Figure 7 illustrates the use of ghost cells within

ARTSS .

Figure 7: Usage of ghost cells within ARTSS

It should be noted that the ghost cells in the corner of a subdomain are not con-

sidered. This is due to the fact that ARTSS uses the Finite- Difference-Method

for discretization. This method only considers the directly adjacent cells for the

solution. For easier implementation, these corner cells are nevertheless taken

into account during data exchange within this implementation. The influence

on the communication time is negligible.

2.3.1 Obstacles

In the initialization phase of a simulation, ARTSS checks whether the calcu-

lation domain contains obstacles. The detection is done by checking whether

obstacle parameters have been set in the configuration file.

14
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This check is extended by the function convert obstacle.

bool MPIHandler::convert_obstacle(real& o1, real& o2, int direction)

This function receives three parameters. o1 and o2 are the respective physical

start and end points of the entire obstacle. The integer value direction indi-

cates one of the three spatial directions (0 = x, 1 = y, 2 = z). Furthermore, it

retrieves the physical start (s1) and end (s2) points of the subdomain and then

checks six different cases shown in Figure 8. Depending on the case, physical

parameters of the obstacle are then adjusted.

Figure 8: Obstacle decomposition in ARTSS

2.3.2 Sources

ARTSS supports temperature, concentration and momentum sources at the

time of this work. These can be either point-shaped or volumetric, as cuboids.

The point sources require only one x, y and z coordinate for orientation in space.

The Message Passing Interface implementation must check in which subdomain

the point source is located. If a point source is located directly between two

subdomains, it is ignored. The check is done outside of the MPIHandler class

using the physical dimensions of the respective subdomain.

The volumetric source works identically to the obstacles. The functionality of

the obstacle decomposition, as shown in Figure 8 and explained in Chapter 2.3.1,

can therefore be adopted.
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2.3.3 Visualization and Logging

Depending on the needs, ARTSS generates different files during execution. For

visualization the vtk file format is used, which can be opened with an external

program and evaluated visually. Furthermore ARTSS generates csv files, which

output the simulation data formatted to the defined time steps. At the end of

a simulation, various dat files are created, which provide the raw cell value as

well as the one-dimensional index of each cell. In addition to the visualization,

ARTSS saves the progress of a simulation and the corresponding output in a

log file.

A decentralized approach continues to be used for visualization and logging.

This means that each subdomain generates its own output. To realize this and

to avoid filename conflicts, each file gets a prefix to the actual filename.

<PREFIX>_<FILENAME>_<FILECOUNTER>.vtk

Example: 121_Test_0000001.vtk

The prefix is composed of the index of the respective subdomain. The first

position is the x-direction, the second position is the y-direction and the third

position is the z-direction. Figure 9 shows the numbering of the subdomains. It

should be noted that the coordinate system used conforms to the MPI standard.

Figure 9: Subdomain numbering scheme
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Ghost cells are also displayed in the visualization. In the serial version these

contain the boundary conditions. However, since the ghost cells are also used

for communication in the MPI implementation, an additional check must be

implemented here. The ghost cells may only be displayed if they contain the

boundary conditions. Ghost cells for data exchange must not be written to the

vtk file.

2.4 Communication

ARTSS mainly uses the Finite- Difference-Method (FDM) to solve the governing

equations. To approximate the derivatives at a given grid point, FDM uses

a 7-Point-Stencil in three dimensions or a 5-Point-Stencil in two dimensions.

Thus, the approximation at a point depends on six, respectively four neighboring

points. The left side of Figure 10 shows a two-dimensional grid with an imprinted

5-Point-Stencil.

Figure 10: Left: 5-Point-Stencil on computational grid; Middle: Computational grid after

domain decomposition; Right: Communication via ghost cells

After a domain decomposition, the problem arises that cells on the outside

no longer have a neighbor, since this neighbor is located within the opposite

subdomain. The middle image in Figure 10 illustrates this problem. The right

neighbor of the 5-Point-Stencil is missing. This problem can be solved with the

use of ghost cells. As already described in Chapter 2.3, each subdomain has its

individual ghost cells. These are initialized in each iteration step with the data

of the outermost cells that are not ghost cells (hereinafter direct adjacent cells)

and then sent to the neighboring subdomain using MPI. This scheme can be

seen on the right side of Figure 10. The gray cells indicate the ghost cells, the

red arrows represent the data links and the green arrows show the initialization

of the ghost cells. The steps just described are explained in more detail in the

following.
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2.4.1 Retrieving the index of direct adjacent cells

To ensure that the ghost cells can be initialized with data from the direct adja-

cent cells in each iteration step, the indices of these are calculated once in the

initialization phase of ARTSS using the calc inner index function.

It should be noted that ARTSS uses a multigrid method to solve the pressure

equation. The goal of the multigrid method is to accelerate the convergence

of a basic iteration method by solving a computationally cheaper problem on

a coarse grid [Küsters, 2018]. Changing the cell sizes automatically brings a

change in the grid resolution and thus a change in the data structure. Accord-

ingly, the indices must be calculated for each level, thus for each grid resolution.

Figure 11 shows an example of a two-dimensional grid on the left and the first

multigrid level on the right.

Figure 11: Left: two-dimensional computational grid; Right: Multigrid level 1

This example results in the following indices for the direct adjacent cells.

Level 0: 9,10,11,12,13,14,17,18,19,20,21,22,25,26,27,28,29,30,33,34,35,

36,37,38,41,42,43,44,45,46,49,50,51,52,53,54

Level 1: 5,6,9,10

Depending on the grid resolution of the original grid, any maximum multigrid

level can be defined by the end user. However, it is necessary that the coarsest

grid resolution has at least four cells in each spatial direction.
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2.4.2 Message Passing

The data exchange between the subdomains takes place in two steps. The first

step is to update the boundary conditions for each subdomain, which can be

either a Neuman, Dirichtlet, or periodic boundary condition. At this point it is

not yet checked whether the subdomain has one of the three boundary conditions

at all. In the second step the function exchange data is called and the data

exchange with the neighboring subdomains takes place.

void MPIHandler::exchange_data(real *data_field, size_t** index_fields,

const size_t *patch_starts, size_t level)

This function receives a total of four parameters. The variable data field is

an array which contains the actual physical values of the considered field (e.g.

temperature, pressure, etc.). The indices for the respective patches of a grid cell

(TOP, BOTTOM, FRONT, BACK, LEFT, RIGHT) are stored in the two-dimensional array

index fields. The start index of each patch is given in the list patch starts.

The variable level defines the multigrid level.

In the initialization phase of ARTSS , each subdomain checks whether a neigh-

boring subdomain exists and stores the result and the direction of the subdo-

main in a list. This list is now looped through and if a neighbor is present, the

following four steps are performed.

1. Depending on the direction of the neighboring subdomain, the indices

belonging to the patch are determined in this step. The MPI process

number of the neighboring subdomain is also determined, since this value

is required for communication between the subdomains.

2. In this step the data of the direct adjacent cells are stored in a temporary

send vector. At the same time a temporary receive vector of the same

length is initialized. This ensures that send and receive data are separated

from each other, otherwise they could be overwritten due to non-blocking

communication.

19



Chapter 2. Implementation

3. Afterwards, the data in the send vector can be transmitted to the neigh-

boring domain using the MPI Isend function. After the data has been

sent, the neighbor subdomain data is received by the MPI Irecv function.

Each communication is also tagged to uniquely associate a send/receive

message pair. To complete the non-blocking communication the MPI Wait

function is called.

4. In the last step, the data of the receive vector is transferred to the respec-

tive ghost cells in the data field.

After the data has been exchanged between the subdomains, a check is made to

see if periodic boundary conditions exist. For this the function exchange data

is called again. If periodic boundary conditions are present, the above steps are

performed. For the communication this time not the process numbers of the

directly neighboring subdomains are determined, but the process numbers of

the periodically neighboring subdomains. It should be noted that each patch of

a cell is processed only once either in the first or in the second function call.

Finally, all processes are synchronized by means of an MPI Barrier. After this

step the message passing for the respective field is completed.
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Analysis

In this analysis, the performance of the MPI implementation in ARTSS is tested.

The MPI implementation can be used in three different ways.

1. Multi CPU (Distributed Memory)

Here the parallelization is only done on CPUs using a distributed memory

system. Each process gets its own memory area and data is only exchanged

via the Message Passing Interface.

2. Multi CPU (Hybrid Memory)

OpenACC-enabled source code can be compiled for parallel execution on

either a multicore CPU or a GPU accelerator. In this approach MPI is

used together with the multicore version of ARTSS . This combination is

referred to as a hybrid memory system.

3. Multi GPU This combination allows ARTSS to use multiple GPU units.

Each GPU is connected to a CPU core.

For a clear comparison, only the Multi GPU and Multi CPU (Distributed Mem-

ory) variants are compared in this analysis.

Scalability or scaling is often used to refer to the ability of software to perform

calculations faster when the amount of resources is increased. Parallelization

is implemented efficiently when the ratio between the actual speedup and the

ideal speedup, using a certain number of processors, is minimized.
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Speedup in the area of parallel computing is defined with

speedup =
t1
tN

. (3.1)

t1 represents the computing time of a calculation on one processor, where tN

refers to the computing time of the same calculation on N processors.

In the most optimal case, the speedup would increase linearly with the number

of processors. In reality, however, the speedup is limited by the portion of the

serial part of the software that cannot be parallelized. This statement can be

described mathematically with Amdahl’s law [Amdahl, 1967],

speedup =
1

s+
p

N

, (3.2)

where s is the serial fraction of the code, p = 1 − s the paralellizable fraction

and N the number of processes. Amdahl’s law states that, for a fixed problem,

the upper limit of speedup is determined by the serial fraction of the code. This

is called strong scaling. Figure 12 shows the visual representation of Amdahl’s

law.
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Figure 12: Visual representation of the Amdahl’s law (strong scaling)
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In contrast, Gustafson’s law,

speedup = s+ P ·N, (3.3)

describes that the scaled speedup increases linearly with the number of proces-

sors and there is no upper bound on the scaled speedup [Gustafson, 1988]. This

is called weak scaling and this statement is based on the assumption that the

parallel part scales linearly with the amount of resources and that the serial part

does not increase with the size of the problem. Figure 13 illustrates Gustafson’s

law.
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Figure 13: Visual representation of the Gustafson’s law (weak scaling)

It can be seen that unlike Amdahl’s law, Gustafson’s law set has no upper

limit. As a result, it is not advantageous to use a large amount of resources

for computation when a problem requires only a small amount of resources. A

more sensible choice is to use small amounts of resources for small problems and

larger amounts of resources for large problems.

3.1 Verification

To determine the correctness of this implementation, verification is done by

comparing the simulation data of the serial CPU version and the Multi CPU
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(Distributed Memory) of ARTSS . The comparison is conducted on all test sim-

ulations available in ARTSS at the time of this work. For the compilation the

Open MPI compiler wrapper (Version 4.0.4) is used, which in turn uses the

GCC (Version 9.3) compiler. The simulation data of the MPI implementation

is computed with six subdomains each (x = 3, y = 2, z = 1 using the coordi-

nates system of ARTSS ). Subsequently, the results of the generated csv files

are compared with each other. When comparing the data, no difference can be

found between the serial version and the MPI implementation. Accordingly, the

Message Passing Interface was successfully verified within ARTSS .

3.2 Scalability

The scalability analysis is performed on the supercomputer JURECA which

is located at the Forschungszentrum Jülich. At the time of this analysis, the

supercomputer is equipped with the following specifications [Forschungszentrum

Jülich GmbH, 2020].

� 1872 compute nodes

– Two Intel Xeon E5-2680 v3 Haswell CPUs per node

* 2 x 12 cores, 2.5 GHz
* Intel Hyperthreading Technology (Simultaneous Multithreading)

– 75 compute nodes equipped with two NVIDIA K80 GPUs

* 2 x 4992 CUDA cores
* 2 x 24 GiB GDDR5 memory

The compilation is done with the PGI Compiler Suite (Version 19.1). This

contains the OpenACC capable C++ compiler as well as an Open MPI compiler

wrapper. All tests are performed in the benchmarking mode of ARTSS . That

is, all outputs are deactivated and flags are set for compiler optimization.
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3.2.1 Test setup

A simple tunnel setup is used as a test scenario for the performance analysis.

Figure 14 shows the geometrical layout of the setup.

Figure 14: Tunnel setup used in scalability analysis

The grid resolution corresponds to 0.025 m in each spatial direction. This results

in 480 cells in x-direction, 80 cells in y-direction and 160 cells in z-direction. The

simulation time is 100 s with a fixed time step of 0.05 s. The background velocity

is constant 0.8 m
s . Information about the used solver and boundary conditions

can be found in Appendix A.

3.2.2 Strong Scaling

As mentioned above, the computational domain has a total of 6144000 cells. For

the strong scaling analysis, this size is kept fixed. In total, five simulations for

the Multi GPU and five simulations for the Multi CPU version are performed.

The simulation runs differ in the number of processes respectively the number

of subdomains.

� First run: 1 process (no domain decomposition)

� Second run: 2 processes (-x 2, -y 1, -z 2 → 3072000 cells per domain)

� Third run: 4 processes (-x 2, -y 1, -z 2 → 1536000 cells per domain)

� Fourth run: 8 processes (-x 2, -y 2, -z 2 → 768000 cells per domain)

� Fifth run: 16 processes (-x 4, -y 2, -z 2 → 384000 cells per domain)
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For each simulation, the wall time, that is, the time taken for the calculation,

and the time spent on the exchange data function are measured. The results

of the Multi CPU version are listed in Table 1. The results of the Multi GPU

version are listed in Table 2. Figure 15 shows the results compared to Amdahl’s

law.

Multi CPU

Processes 1 2 4 8 16

Wall time / s 6872.38 3765.52 1867.97 952.46 532.69

exchange data()/ s - 42.38 21.63 11.29 6.52

Speedup / - - 1.82 3.67 7.22 12.09

Table 1: Results of the strong scaling analysis for the Multi CPU Version

Multi GPU

Processes 1 2 4 8 16

Wall time / s 2428.39 1371.96 822.71 369.42 233.51

exchange data()/ s - 39.11 22.78 10.94 7.02

Speedup / - - 1.77 2.95 6.5 10.40

Table 2: Results of the strong scaling analysis for the Multi GPU Version
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Figure 15: Results of the strong scaling analysis compared to Amdahl’s law
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The strong scaling analysis shows good results for the Multi CPU as well as the

Multi GPU version. The acceleration of both versions is similar as predicted

by Amdahl’s law. However, it can be seen that the Multi GPU version deviates

in the area of larger processor numbers. However, if one compares the times of

the function exchange data within the Multi GPU, it can be seen that these

correspond to the values of theMulti CPU version. The reduction of the speedup

with higher processors is therefore not due to the MPI implementation. The

reason for the slowdown is due to the data exchange between CPU and GPU.

With higher processor numbers, the problem to be calculated becomes smaller,

which is why the data exchange becomes increasingly expensive compared to

the actual calculation.

3.2.3 Weak scaling

In contrast to strong scaling, weak scaling does not change the number of cells

per subdomain. As in the previous analysis, five simulations are performed,

which differ in the number of processors.

� First run: 1 process (no domain decomposition)

� Second run: 2 processes (-x 2, -y 1, -z 2 → 1536000 cells per domain)

� Third run: 4 processes (-x 2, -y 1, -z 2 → 1536000 cells per domain)

� Fourth run: 8 processes (-x 2, -y 2, -z 2 → 1536000 cells per domain)

� Fifth run: 16 processes (-x 4, -y 2, -z 2 → 1536000 cells per domain)

Again, the wall time and the time spent on the exchange data function are

measured. The results of the Multi CPU version are listed in Table 3. The

results of the Multi GPU version are listed in Table 4. Figure 16 shows the

results compared to Gustafson’s law.
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Multi CPU

Processes 1 2 4 8 16

Wall time / s 3624.53 3761.49 3837.31 3905.81 4021.41

exchange data()/ s - 40.98 65.31 83.28 113.88

Scaled speedup / - - 1.93 3.77 7.42 14.42

Table 3: Results of the weak scaling analysis for the Multi CPU Version

Multi GPU

Processes 1 2 4 8 16

Wall time / s 1251.93 1368.98 1390.30 1422.84 1469.52

exchange data()/ s - 38.55 63.01 84.12 112.72

Scaled speedup / - - 1.82 3.45 7.03 13.62

Table 4: Results of the weak scaling analysis for the Multi GPU Version
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Figure 16: Results of the weak scaling analysis compared to Gustafson’s law

For the weak scaling analysis it is important that both versions show a consistent

progression to each other, which can be clearly seen in Figure 16. Comparing

the results of the strong and weak scaling analysis when using two subdomains,

a very good agreement in the wall time can be observed. This is expected, since

in this case the domain sizes in weak and strong scaling correspond.
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Summary and Outlook

The goal of this work was to give ARTSS the ability to use multiple GPUs in

a simulation. This not only allows for faster computation of a simulation, but

also allows for theoretically unlimited use of GPU memory. Thus, for example,

the previously existing maximum value for cells per simulation is no longer ap-

plicable, since the computational domain can now be divided among different

GPUs by means of domain decomposition.

In order to achieve this goal, the Message Passing Interface was implemented.

To avoid changing the structure of the existing code, a separate MPIHandler

class was implemented within the utility group. To ensure that ARTSS can

perform serial computations, all MPI functions are wrapped with conditional

inclusion statements, which can be activated or deactivated during compila-

tion. A decentralized approach was chosen as the parallelization strategy. That

is, each process reads the configuration file for itself and performs the domain

decomposition with the help of the MPIHandler class. Due to this decentral-

ized approach, the data at the edges of the subdomains must be exchanged

in each iteration step, since these are needed for the 7-Point-Stencil of the

Finite-Difference-Method. Data exchange is performed by using non-blocking

communication. For this purpose, the direct adjacent cells of each subdomain

are copied into temporary sender vectors. After successful communication with

the neighboring subdomain, the received data is stored inside the mul.

The performance analysis showed that the MPI implementation scales well and

provides the desired speedup. It should be noted, of course, that the raw data

is only valid on the hardware used in the work. Nevertheless, it is expected

that the scalability is transferable to other systems that support the Message

Passing Interface standard.
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The analysis in this thesis was performed in November 2020 on the supercom-

puter JURECA at Forschungszentrum Jülich. In December 2020, the complete

hardware and software architecture of JURECA was renewed. A renewed analy-

sis of the MPI implementation on the latest hardware would therefore be possible

and advisable.

Furthermore, there is still room for improvement in the area of data output.

Currently, each process generates its own output. Especially the visual evalu-

ation of the VTK files is very tedious. Further tools should be written, which

simplify the handling of the MPI implementation. There is also room for im-

provement in the area of data output. Currently, each process generates its

own output. With a high number of processes, this can result in a very large

number of files, which have a confusing effect on the project. Especially the

visual evaluation of the vtk files is very tedious. More tools should be written

to simplify the handling of the MPI implementation.

The OpenACC standard allows ARTSS to be independent from different hard-

ware vendors. However, it is worth considering using the GPUDirect function

offered by Nvidia for the Multi Gpu variant. This allows data to be exchanged

between GPUs directly via the PCIe bus, without having to take a detour via

main memory. An interesting approach can be found in [Sourouri et al., 2014].
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tal, Jülich.

URL: https://juser.fz-juelich.de/record/860655

31



Chapter 4. Summary and Outlook

Levin, E. [1989], ‘Grand challenges to computation science’, Commun. ACM

32(12), 1456–1457.

URL: https://doi.org/10.1145/76380.76385

MPI Forum [2015], MPI: A Message-Passing Interface Standard, Version 3.1,

High Performance Computing Center Stuttgart (HLRS).

URL: https://fs.hlrs.de/projects/par/mpi//mpi31/

Nvidia [2020a], ‘NVIDIA TESLA P100’, Performance specification .

URL: https://www.nvidia.com/en-us/data-center/tesla-p100/

Nvidia [2020b], OpenACC getting started guide, techreport.

URL: https://www.pgroup.com/resources/docs/20.4/pdf/openacc20 gs.pdf

Sourouri, M., Gillberg, T., Baden, S. B. and Cai, X. [2014], Effective multi-gpu

communication using multiple cuda streams and threads, in ‘2014 20th IEEE

International Conference on Parallel and Distributed Systems (ICPADS)’,

pp. 981–986.

Sterling, T., Anderson, M. and Brodowicz, M. [2018], Chapter 1 - introduction,

in T. Sterling, M. Anderson and M. Brodowicz, eds, ‘High Performance

Computing’, Morgan Kaufmann, Boston, pp. 1 – 42.

URL: http://www.sciencedirect.com/science/article/pii/B9780124201583000010

University of Washington [2020], ‘CPU performance’.

URL: https://boinc.bakerlab.org/rosetta/cpu list.php

Würzburger, M. L. [2019], Dynamic Domain Adaption for Smoke Simulation in

JuROr, Masterarbeit, FH Aachen. Masterarbeit, FH Aachen, 2019.

URL: https://juser.fz-juelich.de/record/868016

32



Appendix A

Appendix A

Inputfile Tunnel-Setup

1 <?xml version="1.0" encoding="UTF-8" ?>

2 <ARTSS>

3

4 <physical_parameters>

5 <t_end> 40. </t_end>

6 <dt> 0.01 </dt>

7 <nu> 0.00001 </nu>

8 </physical_parameters>

9

10 <domain_parameters>

11 <X1> 0. </X1>

12 <X2> 12. </X2>

13 <Y1> 0. </Y1>

14 <Y2> 2. </Y2>

15 <Z1> -2.0 </Z1>

16 <Z2> 2.0 </Z2>

17 <x1> 0. </x1>

18 <x2> 12. </x2>

19 <y1> 0. </y1>

20 <y2> 2. </y2>

21 <z1> -2.0 </z1>

22 <z2> 2.0 </z2>

23 <nx> 480 </nx>

24 <ny> 80 </ny>

25 <nz> 160 </nz>

26 </domain_parameters>

27

28 <adaption dynamic="No" data_extraction="No"> </adaption>

(Continued on the next page)
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29 <solver description="NSTurbSolver" >

30

31 <advection type="SemiLagrangian" field="u,v,w">

32 </advection>

33

34 <diffusion type="Jacobi" field="u,v,w">

35 <max_iter> 100 </max_iter>

36 <tol_res> 1e-07 </tol_res>

37 <w> 1 </w>

38 </diffusion>

39

40 <turbulence type="ConstSmagorinsky">

41 <Cs> 0.2 </Cs>

42 </turbulence>

43

44 <source type="ExplicitEuler" force_fct="Zero" dir="xyz">

45 </source>

46

47 <pressure type="VCycleMG" field="p">

48 <n_level> 4 </n_level>

49 <n_cycle> 2 </n_cycle>

50 <max_cycle> 4 </max_cycle>

51 <tol_res> 1e-07 </tol_res>

52 <diffusion type="Jacobi" field="p">

53 <n_relax> 4 </n_relax>

54 <max_solve> 100 </max_solve>

55 <tol_res> 1e-07 </tol_res>

56 <w> 0.6666666667 </w>

57 </diffusion>

58 </pressure>

59

60 <solution available="No"></solution>

61

62 </solver>

(Continued on the next page)
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63 <boundaries>

64 <boundary field="u"

65 patch="left,right" type="dirichlet" value="0.4" />

66 <boundary field="v,w"

67 patch="left,right" type="dirichlet" value="0.0" />

68 <boundary field="u,v,w"

69 patch="front,back,bottom,top" type="neumann" value="0.0" />

70 <boundary field="p"

71 patch="front,back,bottom,top,left,right" type="neumann"

value="0.0" />

72 </boundaries>

73

74 <obstacles enabled="Yes">

75 <obstacle>

76 <geometry ox1="1.5" ox2="2.5"

77 oy1="0.5" oy2="1.5" oz1="-0.5" oz2="0.5"/>

78 <boundary field="u,v,w"

79 patch="front,back,left,right,bottom,top" type="dirichlet"

value="0.0" />

80 <boundary field="p"

81 patch="front,back,left,right,bottom,top" type="neumann"

value="0.0" />

82 </obstacle>

83 </obstacles>

84

85 <surfaces enabled="No"/>

(Continued on the next page)
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Appendix A

86 <initial_conditions usr_fct="Drift" random="No">

87 <u_lin> 0.8 </u_lin>

88 <v_lin> 0.0 </v_lin>

89 <w_lin> 0.0 </w_lin>

90 <pa> 0. </pa>

91 </initial_conditions>

92

93 <visualisation save_vtk="Yes" save_csv="No">

94 <vtk_nth_plot> 100 </vtk_nth_plot>

95 </visualisation>

96

97 <logging file="info.log" level="info">

98 </logging>

99 </ARTSS>
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